Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Xing Wang,* Hong-Fei Wu, Feng-Ying Geng, Ren-Qing Gao and Hui-Chao Zhou

Department of Chemistry, College of Sciences, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
hongxing_wang@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.019$
$w R$ factor $=0.047$
Data-to-parameter ratio $=15.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

\{2-[(Benzylmethylamino)methyl]ferrocene- $\left.\kappa^{2} N, C^{1}\right\}$ chloro(dimethyl sulfoxide- κ S) platinum(II)

In the title compound, $\quad\left[\mathrm{PtCl}\left\{\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}\right)\right\}\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}\right)\right]$ or $\left[\mathrm{FePt}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}\right) \mathrm{Cl}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right]$, the $\mathrm{Pt}^{\mathrm{II}}$ atom is in a slightly distorted square-planar environment. The substituted cyclopentadienyl plane is nearly perpendicular to the plane of the benzene ring [dihedral angle $=84.6(1)^{\circ}$].

Comment

There is an increasing interest in cycloplatination reactions due to their applications in organic synthesis (Fossy \& Richards, 1999), but only a few cycloplatinated complexes with N-donor ligands have been reported (Ryabov et al., 2002). As a part of our ongoing investigations of N-methyl- N ferrocenylmethylbenzyamines (Wang et al., 2006), a new compound, (I), has been prepared and we report its crystal structure here.

(I)

In the compound (I), atom Pt 1 is in a slightly distorted square-planar environment (Fig. 1 and Table 1). Atoms Pt1, $\mathrm{N} 1, \mathrm{Cl} 1, \mathrm{C} 1$ and S 1 deviate from the mean plane through them by -0.0334 (9), $-0.0770(11), 0.0790(11), 0.0983$ (13) and -0.0658 (10) Å, respectively. Atoms N1 and C11 deviate from the mean plane through the $\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 2-\mathrm{C} 1$ ring by 0.156 (1) and -0.168 (2) A, respectively. The substituted cyclopentadienyl and benzene ring planes are nearly perpendicular to each other, with a dihedral angle of $84.6(1)^{\circ}$. The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table 2).

Experimental

cis-[$\left.\mathrm{Pt}(\mathrm{DMSO}))_{2} \mathrm{Cl}_{2}\right](30 \mathrm{mg}, 0.5 \mathrm{mmol})$ was added to a stirred solution of $\{[(N$-methyl- N-benzyl)amino]methyl\}ferrocene $(160 \mathrm{mg}$, $0.5 \mathrm{mmol})$ in methanol (20 ml). The resulting mixture was refluxed for 30 min under a nitrogen atmosphere. The mixture was cooled to room temperature and the solvent was removed in vacuo. The solid was purified by column chromatography to afford compound (I)

Received 15 December 2005 Accepted 22 December 2005 Online 7 January 2006
(Yield: 56\%). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \delta$, p.p.m.): $7.94(m, 2 \mathrm{H}), 7.04(m, 3 \mathrm{H})$, $4.22(m, 1 \mathrm{H}), 4.13(s, 5 \mathrm{H}), 4.11(d, 2 \mathrm{H}), 3.57(s, 3 \mathrm{H}), 3.54(s, 3 \mathrm{H}), 2.83$ $(m, 4 \mathrm{H}), 1.55(s, 3 \mathrm{H})$. Analysis calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClFeNOPtS}: \mathrm{C}$ 40.24, H 4.18, N 2.23%; found: C 40.19, H 4.16, N 2.18%.

Crystal data

$\left[\mathrm{FePt}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}\right)\right.$
$\left.\mathrm{Cl}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right]$
$M_{r}=626.88$
Monoclinic, $P 2_{1} / c$
$a=12.3198$ (12) \AA
$b=9.7102$ (9) A
$c=18.3096$ (18) \AA
$\beta=90.842$ (1) ${ }^{\circ}$
$V=2190.1$ (4) \AA^{3}
$Z=4$

Data collection

Bruker APEX-II CCD areadetector diffractometer

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.135, T_{\text {max }}=0.312$
11498 measured reflections

Refinement

Refinement on F^{2}
$D_{x}=1.901 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7216
reflections
$\theta=2.4-27.8^{\circ}$
$\mu=7.27 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, red
$0.38 \times 0.20 \times 0.16 \mathrm{~mm}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.047$
$S=1.05$
3872 reflections
247 parameters
H -atom parameters constrained

3872 independent reflections
3560 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-14 \rightarrow 14$
$k=-11 \rightarrow 11$
$l=-21 \rightarrow 18$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0219 P)^{2}\right. \\
\quad+0.9438 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.67 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.77 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Pt} 1-\mathrm{C} 1$	$1.981(3)$	$\mathrm{Pt} 1-\mathrm{S} 1$	$2.1879(8)$
$\mathrm{Pt} 1-\mathrm{N} 1$	$2.132(3)$	$\mathrm{Pt} 1-\mathrm{Cl} 1$	$2.3998(8)$
$\mathrm{C} 1-\mathrm{Pt} 1-\mathrm{N} 1$	$82.14(11)$	$\mathrm{C} 1-\mathrm{Pt} 1-\mathrm{Cl} 1$	$171.17(9)$
$\mathrm{C} 1-\mathrm{Pt} 1-\mathrm{S} 1$	$96.69(9)$	$\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{Cl} 1$	$92.09(7)$
$\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{S} 1$	$177.64(7)$	$\mathrm{S} 1-\mathrm{Pt} 1-\mathrm{Cl} 1$	$89.31(3)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5 . O 1	0.98	2.42	3.057 (5)	122
C13-H13A \cdots Cl1	0.97	2.71	3.326 (4)	122
C15-H15 \cdots Cl1	0.93	2.66	3.479 (4)	148
$\mathrm{C} 20-\mathrm{H} 20 A \cdots \mathrm{O} 1^{\text {i }}$	0.96	2.54	3.407 (5)	151
$\mathrm{C} 21-\mathrm{H} 21 B \cdots \mathrm{Cl} 1$	0.96	2.65	3.314 (4)	126
$\mathrm{C} 21-\mathrm{H} 21 \mathrm{C} \cdots \mathrm{O} 1^{\text {i }}$	0.96	2.45	3.341 (5)	154

[^0]

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary size.

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with $\mathrm{C}-$ H distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors acknowledge the Natural Science Foundation of Tianjin City, People's Republic of China, for financial support (grant No. 033609011).

References

Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Fossy, J. S. \& Richards, C. J. (1999). Organometallics, 18, 2116-2124.
Ryabov, A. D., Panyashkina, I. M., Polyakov, V. A. \& Fischer, A. (2002). Organometallics, 21, 1633-1636.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, H.-X., Wu, H.-F., Geng, F.-Y., Gao R.-Q. \& Zhou, H.-C. (2006). Acta Cryst. E62, m14-m15.

[^0]: Symmetry code: (i) $-x,-y,-z+2$.

